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There was discussion that your prizewinning work was not really
physics, but computer science. What do you think?

My definition of physics is that physics is not what you’re working on, but how you’re working
onit. If you have the attitude of someone who comes from physics, it’s a physics problem.

What’s your advice for today’s PhD students?

Where two fields are driven apart, see if there is anything
interesting in the crack between them. I've always found the
interfaces interesting because they contain interesting people
with different motivations, and listening to them bicker is quite
instructive. It tells you what they really value and how they’re

trying to solve a problem. If they don’t have the tools to solve the problem, there may be
space for me.
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Giorgio Parisi

“They make it possible to understand and
describe many different and apparently
entirely random materials and
phenomena, not only in physics but also
in other, very different areas, such as
mathematics, biology, heuroscience and
machine learning.”
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k< M. This however is not rez;lly intereéting. The fasc{nating fact is that
when N is large and M/N ~ «, if o > 2 the set Sy Ng<as Uy is typically
empty (a classical result), while if a < 2, with probability very close to 1, we
have

1
NloguN (SN ﬂ Uk) ~ RS(a) . (0.2)
k<M
Here,
— m g\, 1 e 1, q_
RS(a) = Jin, (aElogN(m) t3 1o . +3 log(1 q)) ;

where N (z) denotes the probability that a standard Gaussian r.v. g is > z,
and where logx denotes (as everywhere through the book) the natural log-
arithm of x. Of course you should rush to require medical attention if this
formula seems transparent to you. We simply give it now to demonstrate
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for Spin Glasses

Volume II: Advanced Replica-Symmetry
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Other type of “glasses”

Traveling salesman problem:
“Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?”
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Simulated annealing

13 May 1983, Volume 220, Number 4598 SCI E NCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi
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Summary. There is a deep and useful connection between statistical mechanics )‘ m l\mm\\\mm j\ N\ \
(the behavior of systems with many degrees of freedom in thermal equilibrium at a MITARALY IR :
finite temperature) and multivariate or combinatorial optimization (finding the mini- : : :
mum of a given function depending on many parameters). A detailed analogy with S. K rkpatrlck C.D. Gelatt M.P. VeCChI
annealing in solids provides a framework for optimization of the properties of very
large and complex systems. This connection to statistical mechanics exposes new

information and provides an unfamiliar perspective on traditional optimization prob-
lems and methods.

The analogy between cooling a fluid

'Escape local minima

and optimization may fail in one impor- O Current solution

e : © Local minimum
lant ro_:spcct. In ideal fluids all' the atoms - presmniibintimi Objective
are alike and the ground state is a regular value

crystal. A typical optimization problem
will contain many distinct, noninter-
changeable elements, so a regular solu-
tion is unlikely.

The physical properties of spin glasses
at low temperatures provide a possible
guide for understanding the possibilities
of optimizing complex systems subject
to conflicting (frustrating) constraints.




The Hopfield Model

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective

computational abilities

(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)

J. J. HOPFIELD

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by John ] . Hopfield, January 15, 1952

ABSTRACT  Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-
lective properties of systems having a large number of simple
equivalent compenents (or neurons). The physical meaning of con-
tent-addressable memory is described by an appropriate phase
space flow of the state of a system. A model of such a system is
given, based on aspects of neurobiology but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

calized content-addressable memory or categorizer using ex-
tensive asynchronous parallel processing.

The general content-addressable memory of a physical
system
Suppose that an item stored in memory is “H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941).” A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input “& Wannier, (1941)” might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input “Vannier, (1941)”. In computers, only relatively simple
forms of content-addressable memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).
There are classes of physical systems whose spontaneous be-
havior can be used as a form of general (and error-correcting)
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The Hopfield Model

PHYSICAL REVIEW A VOLUME 32, NUMBER 2 AUGUST 1985

Spin-glass models of neural networks

Daniel J. Amit and Hanoch Gutfreund
Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

H. Sompolinsky
Department of Physics, Bar-Ilan University, 52100 Ramat-Gan, Israel
{Received 22 March 1985)

Two dynamical models, proposed by Hopfield and Little to account for the collective behavior of
neural networks, are analyzed. The long-time behavior of these models is governed by the statistical
mechanics of infinite-range Ising spin-glass Hamiltonians. Certain configurations of the spin sys-
tem, chosen at random, which serve as memories, are stored in the quenched random couplings.
The present analysis is restricted to the case of a finite number p of memorized spin configurations,
in the thermodynamic limit. We show that the long-time behavior of the two models is identical, for
all temperatures below a transition temperature 7.. The structure of the stable and metastable
states is displayed. Below T, these systems have 2p ground states of the Mattis type: Each one of
them is fully correlated with one of the stored patterns. Below 7 ~0.467,, additional dynamically
stable states appear. These metastable states correspond to specific mixings of the embedded pat-
terns. The thermodynamic and dynamic properties of the system in the cases of more general distri-
butions of random memories are discussed.

D. Amit H. Gutfreund H. Sompolinsky
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"Only physicists were interested in
neural networks at the time [...] My
professional life truly shifted in
February 1985 during a physics
symposium in Les Houches, in the
French Alps. There, | met the creme de
la creme of international research
interested in neural networks and
gave my very first talk (in English!).”

From “Quand la Machine Apprend”
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| benchmarked neural networks against
kernel methods with my Ph.D advisors Gerard
Dreyfus and Leon Personnaz. The same year,
two physicists working close-by (Marc Mezard
& Werner Krauth) published a paper on an
optimal margin algorithm called 'minover,
which attracted my attention.... but it was not
until | joined Bell Labs that | put things
together and we created support vector
machines.

From “Data Mining History: The
Invention of Support Vector
Machines”



The Perceptron

Optimal storage properties of neural network models

E Gardnert and B Derridaz

T Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a (K) with a(0)=2. The minimum fraction of wrong bits vanishes for a <a(K) and
increases from zero for a > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be

broken.
0.3
Uy
o2 .
c O '
O o
) C
% @) 0.1F
| -
| -
w2

1 Z 3 L

<

patterns/ bits

c.f. [Cover 1967]



The Perceptron

Optimal storage properties of neural network models

E Gardnert and B Derridaz

T Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
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that each right bit is stabilised by a local field at least equal to a parameter K. For each
; value of a and K, there is a minimum fraction f,;, of wrong bits. We find a critical line,

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

uuuugulauuua 1D WWHDIMWILM,: 11V YWIUHHW 1D VEAIVREIGIVWY VAPIIWILIY GO & 1WIWVULIWVIL Vi LUV OWWIidERY.
ratio, @ = p/ N, of the value «(>0) of the product of the spin and the magnetic field at
each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and
1 (completely correlated). The capacity increases with the correlation between patterns
from a =2 for correlated patterns with x =0 and tends to infinity as m tends to 1. The
calculations use a saddle-point method and the order parameters at the saddle point are
assumed to be replica symmetric. This solution is shown to be locally stable. A local
iterative learning algorithm for updating the interactions is given which will converge to
a solution of given x provided such solutions exist.

c.f. [Cover 1967]
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Learning from Examples in Large Neural Networks

H. Sompolinsky *’ and N. Tishby
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

H. S. Seung

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 29 May 1990)

A statistical mechanical theory of learning from examples in layered networks at finite temperature is
studied. When the training error is a smooth function of continuously varying weights the generalization
error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of
single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit
a discontinuous transition to perfect generalization. For intermediate sizes of the example set, the state
of perfect generalization coexists with a metastable spin-glass state.
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of perfect generalization ¢ ensuring recognition) for sets of random patterns. The relevance of
our results to the perceptron’s ability to generalize are pointed out, as
is the role of diagonal couplings in thle fully connected Hopfield model.
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Benign overfitting

Neural Networks and the Bias/Variance Dilemm

Stuart Geman 1Filie ’B[i)enensttock
Division of Applied Mathematics, il Louisa

, , _ ESPCI, 10 rue Vauguelin,
Brown University, Providence, RI 02912 USA 75005 Paris. France

+._ Total Error

S

Tota! Error B e

T Smmagp e —4
14 .“(/ Bias 1
\ Variance
N e
D e |
Variance
z 5 S ot W ’ L 0 . . . ]
) 5 10 15 20 25 30 ) 5 10 15 2
# Hidden Units
Figure 14: Kernel regression for handwritten numeral recognition. Bias, vari- Figure 16; Total error, bias, and variance of feedforward neural network as a

A andtoral eror 45 fnetion GEkermel Bandydth. function of the number of hidden units. Training is by error backpropagation.

For a fixed number of hidden units, the number of iterations of the backprop-
agation algorithm is chosen to minimize total error.



Double descent

A Simple Weight Decay Can Improve
Generalization

Part of Advances in Neural Information Processing Systems 4 (NIPS 1991)

Anders Krogh” John A. Hertz
CONNECT, The Niels Bohr Institute Nordita
Blegdamsvej 17 Blegdamsvej 17
DK-2100 Copenhagen, Denmark DK-2100 Copenhagen, Denmark
krogh@cse.ucsc.edu hertz@nordita.dk

Figure 1: Generalization error as a
function of @ = p/N. The full line is
for A = ¢? = 0.2, and the dashed line
for A = 0. The dotted line is the gener-
alization error with no noise and A = 0.
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Reflections After Refereeing Papers for NIPS

Our fields would be better off with far fewer theorems, less emphasis on faddish
stuff, and much more scientific inquiry and engineering. But the latter requires real
thinking.

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

Mathematical theory is not critical to the development of machine learning.

But scientific inquiry is.
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Mathematical theory is not critical to the development of machine learning.

But scientific inquiry is.

3.5 INQUIRY

INQUIRY = sensible and intelligent efforts to understand what is going on. For
example:

mathematical heuristics

simplified analogies (like the Ising Model)
simulations

comparisons of methodologies

devising new tools

theorems where useful (rare!)

shunning panaceas



